2018

CBCS

3rd Semester

MATHEMATICS

PAPER-C6T

(Honours)

Full Marks: 60

Time: 3 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Group Theory-I

Unit-I

1. Answer any two questions:

2×2

(a) Is the set R^* of all non-zero real numbers a group with respect to the operations o defined by $a \circ b = |a|b$ for all $a, b \in R^*$? Justify your answer.

- (b) Let (G,*) be a group of even order. Show that there exists $a \in G$ show that $a \neq e, a^2 = e$.
- (c) Let (G, o) be a group. Define a mapping $f: G \to G$ by $f(x) = x^{-1}, x \in G$. Prove that f is a bijection.
- 2. Answer any one question :

1×5

- (a) Show that the set of six transformations f_1 , f_2 , f_3 , f_4 , f_5 and f_6 on the set of complex numbers defined by $f_1(z) = z$, $f_2 = (z) = \frac{1}{z}$, $f_3(z) = 1 z$, $f_4(z) = \frac{z}{z-1}$, $f_5(z) = \frac{1}{1-z}$ and $f_6(z) = \frac{z-1}{z}$ forms a finite non-Abelian group of order 6 with respect to the composition of mapping.
- (b) Construct the dihedral group D_4 from the symmetries of a square. Show that the order of it is 8.

Unit-II

3. Answer any two questions :

2×2

(a) A non-Abelian group have an Abelian subgroup. Justify the statement with example.

- (b) In a group $(G, \cdot), (ab)^3 = a^3b^3 \forall a, b \in G$. Show that $H = \{x^3 : x \in G\}$ is a subgroup of G.
- (c) Let (G, \circ) be a group and H, K are subgroups of (G, \circ) . Then show that $H \cap K$ is a subgroup of (G, \circ)
- 4. Answer any two questions :

2×5

- (a) Prove that H is a subgroup of Z_{12} where $H = \{\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}, \overline{10}\}$.
- (b) Let H, K be subgroups of a group G. Prove that set HK is a subgroup of G iff HK = KH.

where
$$HK = \{hK : h \in H \text{ and } k \in K\}$$

 $kH = \{Kh : k \in K \text{ and } h \in H\}$

(c) Let H be a subgroup of a group G and $a \in G$. Define normalizer of a in G and centralizer of H in G. Show that centralizer of H and normalizer of H in G are not same. Justify your answer with example.

Unit-III

5. Answer any two questions :

 2×2

(a) Let G be a finite group, A and B be two subgroups of G such that $A \subseteq B \subseteq G$. Prove that,

[G:A] = [G:B][B:A]

- (b) Show that a cyclic group with only one generator can have at most two elements.
- (c) Determine all distinct left cosets of A_3 in S_3 .
- 6. Answer any one question :

1×10

- (a) (i) Let H be a subgroup of a group G. Then show that the set of all distinct left cosets of H in G have the same cardinality.
 - (ii) Show that the number of even permutation of a finite set (containing at least two elements) is equal to the number of odd permutation on it.
 5+5
- (b) Prove that, a finite group of order n is cyclic if and only if it has an element of order n. Also prove that every subgroup of a cyclic group is cyclic.
 5+5

Unit-IV

7. Answer any two questions :

 2×2

- (a) Let $G = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} : a, b, c \text{ are real and } ac \neq 0 \right\}$ be a group under matrix multiplication. Show that $N = \left\{ \begin{pmatrix} 1 & c \\ 0 & 1 \end{pmatrix} : c \text{ is a real number} \right\}$ is a normal subgroup of G.
 - (b) If H be a subgroup of a commutative group G then show that G/H is commutative.
- (c) Show that if p is a prime number, then any group G of order 2p has a normal subgroup of order p.
- 8. Answer any one question :

1×10

(a) Define centre Z(G) of a group G. Prove that Z(G) is a normal subgroup of (G, o). Also prove that mn = nm ∀m∈ M and n∈ N, where M and N are two normal subgroups of a group G. Show that M ∩ N = {e}, e being the identity element in G. (b) State and prove Cauchy's theorem for finite Abelian groups.
2+8

Unit-V

9. Answer any two questions:

 2×2

(a) Define $f:(S_3,\circ)\to(\{1,-1\},\bullet)$ by

 $f(\alpha) = 1$, if α is an even permutation in S_3 = -1, if α is an odd permutation in S_3 .

Show that f is homomorphism from (S_3, \circ) to $(1,-1), \bullet)$, o is the composition of mapping.

- (b) Show that Ker ϕ (Kernel of homomorphism ϕ) from (G, o) to (G, *) is a normal subgroup of G.
- (c) Let GL(2, R) be the group of non-singular real matrices under multiplication, R* be the group of nonzero reals under multiplication and a function

$$F: GL(2,R) \to R^*$$
 is defined by $f\left[\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right] = ad - bc$

Show that f is a homomorphism.

10. Answer any one question :

 1×5

- (a) Prove that every finite group G is isomorphic to a permutation group.
- (b) If H and K are two normal subgroup of G such that $H \subseteq K$, then show that $\frac{G}{K} \cong \frac{G/H}{K/H}$.